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in do/i) and in Reynolds number. This is also in sharp pipe flow. For practical purposes, it appears reasonable 

contrast with the heat-transfer results for the downstream to neglect the effect of the upstream separation in computing 

separated region. In the latter situation, large increases in heat-transfer results. 
NulNu,, were sustained as both d,/D and Re decreased. 
For instance, for Re = iOOOG, the peak value of Nu/Nur~ 
increased from 5 to 9 as d,/D was varied from $ to i. No 
corresponding variation was found to occur in the up- 1. 
stream separated region. 

The peak value of Nu/Nu,, in the upstream separated 

region typicaily occurred at about two diameters upstream 
of the orifice. That a maximum should occur is consistent 2. 

with physical reasoning, inasmuch as the eddying flow is 
highly constrained in the region adjacent to the mating of 
the tube wail and orifice. 3. 

In conclusion, the results of this investigation suggest 
that heat-transfer coefficients in an upstream separated 
region are little different from those in a thermally developed 
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1. INTRODUCTION 

REAL transfer processes usually take place in a medium 
whose temperature and concentration vary continuously 
with time. For example when extracting matter out of a 
porous body by diffusion, it wiU move continuously to the 
body surface and then into the surrounding medium. As a 
result, the extracted mass concentration wilI continuously 
increase. A similar phenomenon occurs when drying; the 
external air humidity is increased and its temperature re- 
duced, while moisture is evaporated and material heated. 
Analogous problems arise when calculating semi-coking 
kinetics, diffusion-electrical processes, etc. 

The peculiarity of all these problems is caused by the 
interrelation existing between the internal and external 
potentials. The mathematical model of heat and mass trans- 
fer should consider the variation of the external potentials 
under adequate boundary conditions. Such a generalization 
of the boundary conditions makes possible to some extent 
the application of results obtained when considering transfer 
phenomena in a stationary or even a moving layer. 

Solutions of problems of this type in pure heat or mass 
transfer are given in references [I-4]. Heat transfer with 

ZY 

only the external medium temperature changing consider- 
ably with time is discussed in reference [S]. 

A profound theoretical analysis of transfer processes is 
given in reference [6]. The present paper is based on that 
monograph and considers heat and mass transfer in a medium 
with variable potentials. 

2. BASIC EQUA~ONS 

Internal heat and mass transfer is described by a system of 
differential equations which, for one-dimensional bodies, 
can be written in dimensionless form as 

aT(x, F5) 
p=i 

at-0 

dV(X, Fo) + f aqx, Fo) 
-- 

ax2 X ax 
as(x, 8-0) 

- EKO ~- 
8Fo (1) 

S(X, Fo) 
~ = Lu 

a2e(X, Fof I- ae(X, Fo) 
aF0 ax2 +XT 1 

- LuPn 
a’T(X, Fo) 

C 3x2 
+ r wx, ~0) 

X ax I 
(2) 
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When symmetry exists where fl and jz are functions representmg transfer kmetics. 

L?T(O, Fu) EO(O, Fo) 
If the linearized problem in the vicinity of some values for 

=O 
(7.1 c’x 

[T,(Fo) - T(1. Fo)], [O,(Fo) - O(1. Fo)] is considered (i.e. 

taking only the linear part of the Taylor expansion forf; and 

T,O, Fo) # L, O(0. Fo) # 1. I .?I .f2) instead of (6) and (7), we obtain 

The dimensionless boundary conditions of the third kind d T,(Fu 1 

will be as follows [6] dFc,- 
+ K,,[T,,Fo) - 7-(1. Fol] 

?T(l, FO) 

iX 
- Bi,[Tc((Fo) - T(1, Fe)] 

+ (1 - e) KoLuBi,[O,,Fo) - @(I, Fo)] = 0 (4) 

L;B, t, Fo) ?T(l, Fu) 
___~~ +p,, - 

?X ?X 

+ Bi,[B,(Fo) - @(I. Fo)] = 0 15) 

3. THE PROBLEM 

+ Kzz[tlc,Fo~ ~~ 01 1, Fo\] = 0 

The initial potentials of the surrounding medium 

T.(O) = 1, f),iO) I 

Further. solutions are given for 

The variation of the external potentials with time is a 

function of the difference between body medium and surface 

potentials 

dT,(Fo) 
-dFo + ji([T,(Fo) - T(1, Fo)]. 

T(X, 0) = 0. I/(.t. (iI = (I 

These solutions can easily be generalized for the case of 

parabolic initial distributions of transfer potentials. 

[U,,Fo) - 8(1, Fo)]) = 0 (6) 4. SOLUTION OF THE PROBLEM 

dO,(Fo) 
+ fi;[T,(Fo) - T(l. Fo)]. 

The equations system of differential (1). (1) describing the 
dFo heat and mass transfer is solved for the conditions (3) to (5) 

and (8) to (11) by the use of the Laplace transform. The final 

[ti,(Fo) - U( 1. Fo)] I 1 0 (7) results are : 

T(X, Fo) = mexp [- P.ZFOl (12) 

Here 
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K 1, - Kz2 + W,&KoK,) EKoK,K,I 
K11 - d + (K,hKoKd 

]P.,+KO[I-~~~Q”~} (16) 

K II - K,, + (K,,IEKoKI) - EKOKIKZI 1 + r (K,, - d, (Kn - rf) - K~KzI 

K,, - p,z + (K,,/&KoK,) 
+z 

BQc, K,, - 14 + (KIzIEKoKI) 

+A 
Bi, [ 

K,, + K,, - -&if (K,, - P:) Wzz - P:) - K,&,I 
WA) 

K,, - p; + (K,,I&KoKd - [K,I - pc.’ + (K~J~KoK,)12 II 
{ 

2p, K,, - Ku + (KdKoK,) - EKoKIK,, 8 (KII - d) (Ku - d) - KuKu 

+i 
--- 

[K11 - pf + (KIu’EKoKI)I~ Big& K,, - d + (K,hKoK,) 

4dsip(.) 

P& = 
[ 

EKoK,, 
(1 - 9:) + 7 1 4r(siPn) + (1 - @) + &KoPn (K,, - d)(Ka - d) - KILK~I 9i 

Bi,,, K,, - P: 
- W&4 

11 -A A 

l--E 
K, = ~ LUBi, 

E Bi, 

where p. are roots of the characteristic equation 

Qn,Pnz - f'n,Qn~ = 0 

ic 

4rG) = 1-g&)+ 
x4 

2.4. (r + 1) (I- + 3) - = c 

XZk 

(+2/c)!! (r + 2k - l)!! 
K=cl 

d&4x) x 
xZkC1 

VAX)= -dx=P- 
r+1 2(r+;3(r+3)+“‘=f:I-1)k(2k)!!(~+2k+1)!! 

K=O 

For the plate (r = 0), cylinder (r = 1) and sphere (f = 2) the functions dr(x) and V,(x) can be written as follows 

de(x) = cos x, 41(x) = J,(x), &(x) = G 

V,(x) = sin x, v,(x) = J,(x), v,(x) = 
-xcosx + sinx 

x2 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

When K,, = K,, = K,, = 0 the results become identical with those given in reference [5]. When K,, = 0 also, the results 

equal those presented in reference [6]. 
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NOMENCLATURE INTRODUCTION 

dimensionless constant defined in equation (10); 

total band absorptance defined in equation (1) 
-1 

[cm 1. 
spectroscopic constant [cm- ‘I; 

dimensionless total band absorptance defined 

in equation (3) : 
spectroscopic constant [(atm)-“1 : 
spectroscopic constant [cm2,/g] ; 
dimensionless functions defined in equation (2); 

spectral absorption coefficient [cm?g] : 
mean beam length [cm j ; 
equivalent broadening pressure [(atm)” J : 
geometric beam length [cm] ; 
dimensionless equivalent broadening pressure 

defined in equation (3); 

dimensionless mass path length defined in equa- 

tion (3); 

THE CALCULATION of radiant energy transfer in bounded and 

unbounded systems requires a description of gaseous band 

absorption and emission phenomena. For practical pur- 

poses, it is often convenient to use the total or integrated band 

absorptance. .4. defined as 

where A(v) is the spectral absorptance. Av the effective band 

width. k(v) the spectral absorption coefficient and M’ the 

mass path length. The spectral absorption coefficient k(v) 

is. in general, a very rapidly varying function of frequency. 

and hence exact integration of equation (1) over a complex 

vibration-rotation band is formidable. 

mass path length [g/cm*]. 

In one of the first attempts to describe total band absorp- 

tance analytically, Schack [1] approximated the spectral 

absorption coefficient as a function of reordered wavelength 

by a straight line and by a series of straight lines. The result 

for the straight-line approximation is a simple expression 

involving two correlation constants (two-parameter model). 

and is not a function of pressure. Penner [Z] has pointed out 

that this approximation is of little value since it is valid only 

at high pressures where substantial overlapping of rotational 

lines occurs. Edwards and Menard [3] have also mentioned 

that as the mass path length becomes large, Schack’s expres- 

sion approaches a constant, instead of the logarithmic 

asymptote indicated by experimental results [4-~7] 

Greek symbols 

;. 
wave number [cm-‘] ; 
angle [deg] ; 

8. solid angle [steradian]. 

* The present work is partially supported by NASA 

George C. Marshall Space Flight Center. Huntsville. 
Alabama, under contract No. NAS 8-850. 

t Associate Professor and Graduate Student, respec- 

tively, Department of Mechanical Engineering. 

Much of the experimental band absorptance data avaIl- 

able to date has been correlated by using linear. square root. 


